

MBD-003-006305 Seat

Seat No.

B. Sc. (Bioinformatics) (Sem. III) (CBCS) Examination

November / December - 2016

BI - 303 : Principles of Sequence Analysis (Old Course)

Faculty Code: 003 Subject Code: 006305

Time: $2\frac{1}{2}$ Hours] [Total Marks: **70**

Instructions: (1) All questions are compulsory.

(2) The right side figure indicates total marks of the question.

SECTION - I

- Answer the short answer questions: 20 1 What is Specificity? 1. 2. Inserting some number of "-" symbols which is called a.....? 3. Which is the amount of characters which match exactly between two different sequences? The three primary, methods of producing pairwise alignments 4. are _____, ____ and _____. Local alignments never have terminal gaps, because a higher 5. score could be obtained by deleting the gaps. (True or False) 6. The guide tree can be established using a pairwise distancebased approach or by choosing from many guide trees in a parsimony framework. (True or False)
 - 7. Needleman-Wunsch algorithm is a general global alignment technique based on ______.
 - 8. Is an expression commonly used to measure computational complexity
 - 9. Hidden Markov Model (HMM) can produce both global and local alignment (True / False)
 - 10. What is the use of phylogenetic, reconstruction?

	11. A is a broad term for the diagrammatic representation of a phylogenetic tree.				
	12.	Phylogenetic trees can also be built using T-Theory (True/false)			
	13.	Abbreviation of UPGMA			
	14.	PSI-BLAST produces alignments.			
	15.	Name any one tool to construct MSA			
	16.	Name any one tool to construct Phylogenetic trey			
	17.	Motif finding, also known as analysis, is a method of locating sequence motifs in global MSAs			
	18.	is a method to find protein-coding genes.			
	19.	Which motifs appears to lack secondary structure ?			
	20.	Which motif describes the connectivity between secondary structural elements ?			
		SECTION - II			
2	Answer the following questions: 25				
	(A)	Explain any Three:			
	(A)	Explain any Three: 1. Global Alignment			
	(A)	-			
	(A)	1. Global Alignment			
	(A)	 Global Alignment GenBank 			
	(A)	 Global Alignment GenBank Bit score 			
	(A)	 Global Alignment GenBank Bit score PHI BLAST 			
	(A) (B)	 Global Alignment GenBank Bit score PHI BLAST Blocks 			
		 Global Alignment GenBank Bit score PHI BLAST Blocks SP Score. 			
		 Global Alignment GenBank Bit score PHI BLAST Blocks SP Score. Explain any Three: 			
		 Global Alignment GenBank Bit score PHI BLAST Blocks SP Score. Explain any Three: Application of MSA 			
		 Global Alignment GenBank Bit score PHI BLAST Blocks SP Score. Explain any Three: Application of MSA Properties and types of phylogenetic tree 			
		 Global Alignment GenBank Bit score PHI BLAST Blocks SP Score. Explain any Three: 9 Application of MSA Properties and types of phylogenetic tree How to retrieve sequence data from NCBI Gene? 			
		 Global Alignment GenBank Bit score PHI BLAST Blocks SP Score. Explain any Three: Application of MSA Properties and types of phylogenetic tree How to retrieve sequence data from NCBI Gene? Dot matrix 			

	(C)	Attempt any Two:				
		1.	Make brief note on PAM matrices			
		2.	Explain Needleman Waunsch algorithm for pairwise alignment			
		3.	Explain Hidden Markov Model in MSA			
		4.	Describe Progressive method of MSA			
		5.	Describe PSI BLAST.			
3	Ans	wer	the following questions:	25		
	(A)	Exp	olain any Three :	6		
		1.	Distance matrix			
		2.	Gap penalty			
		3.	Cladogram vs. Phylogram			
		4.	E-value			
		5.	Hamming Distance			
		6.	Regular expression.			
	(B)	(B) Explain any Three:				
		1.	Maximum parsimony			
		2.	Types of BLAST			
		3.	BLOSUM			
		4.	Relationship of phylogenetic analysis with MSA			
		5 .	Motifs and Domains			
		6.	Maximum likelihood.			
	(C)	Attempt any Two:				
		1.	How local MSA is performed ?			
		2.	BLAST algorithm			
		3.	Make note on pattern searching			
		4.	Distance based method for phylogenetic analysis			
		5.	Phylogenetic analysis steps.			